Right Alternative Rings of Characteristic Two

نویسنده

  • R. L. SAN SOUCIE
چکیده

for all w, x, y and showed by example that (1.1) can fail to hold. Prior to this, Kleinfeld [l ] generalized the Skornyakov theorem in another direction by assuming only the absence of one sort of nilpotent element. We now specify Kleinfeld's result in detail. Let F be the free nonassociative ring generated by Xi and x2 and suppose that R is any right alternative ring. Kleinfeld calls t, u, v in R an alternative triple if (i) there exist elements a[xi, x2], |8[xi, x2], 7[xi, x2] in F and elements ru r2 in i?such xhatt=a[r\, r2], u=fi[ri, r2], v=y[ri,r2] and (ii) if Si and s2 are elements from an arbitrary alternative ring, and if t' =a[si, s2], u' =fi[si, s2], v' =y[si, s2], then (t', u', v') = 0. The ring R is said to have property (P) if t, u, v an alternative triple in R and (t, u, v)2 =0 imply (t, u, v) =0. By the definition of an alternative triple, an alternative ring has property (P). Kleinfeld's result is the converse, assuming characteristic not two; that is, a right alternative ring of characteristic not two is alternative if (and only if) it has property (P). We herein extend this line of investigation by proving that a right alternative ring of characteristic two, satisfying (1.1), is alternative if (and only if) it has property (P). The methods are mainly those used in [2], coupled with two essential lemmas (numbered 4 and 5 in our paper) due to Kleinfeld. Following [2], we say that R is strongly right alternative if R is a right alternative ring satisfying (1.1). Throughout the paper, R will always denote such a ring, with the additional hypothesis that R have characteristic two.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternative Loop Rings

DRAFT Abstract The right alternative law implies the left alternative law in loop rings of characteristic other than 2. We also exhibit a loop which fails to be a right Bol loop, even though its characteristic 2 loop rings are right alternative.

متن کامل

When Is a Right Alternative Loop Ring That Is Also Right Bol Actually Moufang?

In this paper, we consider some connections between loops whose loop rings, in characteristic 2, satisfy the Moufang identities and loops whose loop rings, in characteristic 2, satisfy the right Bol identities.

متن کامل

On zero-divisor graphs of quotient rings and complemented zero-divisor graphs

For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...

متن کامل

$n$-cocoherent rings‎, ‎$n$-cosemihereditary rings and $n$-V-rings

 Let $R$ be a ring‎, ‎and let $n‎, ‎d$ be non-negative integers‎. ‎A right $R$-module $M$ is called $(n‎, ‎d)$-projective if $Ext^{d+1}_R(M‎, ‎A)=0$ for every $n$-copresented right $R$-module $A$‎. ‎$R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted‎, ‎it is called a right co-$(n,d)$-ring if every right $R$-module is $(n‎, ‎d)$-projective‎. ‎$R$...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010